
SHRINKAGE MAPPINGS AND THEIR INDUCED PENALTY FUNCTIONS

Rick Chartrand∗

Los Alamos National Laboratory
Los Alamos, NM 87545, USA

ABSTRACT

Many optimization problems that are designed to have sparse
solutions employ the `1 or `0 penalty functions. Conse-
quently, several algorithms for compressive sensing or sparse
representations make use of soft or hard thresholding, both of
which are examples of shrinkage mappings. Their usefulness
comes from the fact that they are the proximal mappings
of the `1 and `0 penalty functions, meaning that they pro-
vide the solution to the corresponding penalized least-squares
problem. In this paper, we both generalize and reverse this
process: we show that one can begin with any of a wide class
of shrinkage mappings, and be guaranteed that it will be the
proximal mapping of a penalty function with several desirable
properties. Such a shrinkage-mapping/penalty-function pair
comes ready-made for use in efficient algorithms. We give an
example of such a shrinkage mapping, and use it to advance
the state of the art in compressive sensing.

Index Terms— Compressive sensing, sparse representa-
tions, shrinkage, nonconvex optimization, alternating direc-
tion method of multipliers

1. INTRODUCTION

The `1 norm is extensively used as a penalty function to en-
force sparsity of solutions to optimization problems. Among
the very many algorithms that have been developed for `1

minimization, a common tool [1–4] is the use of soft thresh-
olding, defined componentwise as follows:

Sλ1 (x)i = max{|xi| − λ, 0} sign(xi). (1)

The common appearance of S1 in algorithms can be explained
by the fact that it is the proximal mapping of the `1 norm:

argmin
w

‖w‖1 + 1
2λ‖w − x‖22 = Sλ1 (x). (2)

While the convexity of the `1 norm is a major reason for
its common usage, some algorithms attempt to minimize the
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`0 penalty function instead. This often leads to the use of hard
thresholding [5, 6]:

Sλhard(x)i =

{
0 if |xi| ≤ λ
xi if |xi| > λ

, (3)

in terms of which the proximal mapping of ‖·‖0 is expressed:

argmin
w

‖w‖0 + 1
2λ‖w − x‖22 = S

√
2λ

hard (x). (4)

Knowing the proximal mapping for a penalty function im-
mediately provides possibilities for efficient algorithms for
solving the penalized sparse-recovery problem. For example,
consider the following problem:

min
x
‖x‖1 + µ

2 ‖Ax− y‖22. (5)

This can be used to find a sparse representation of y with re-
spect to a dictionaryA, or to recover the sparse representation
of a signal from undersampled data y, where A is the product
of the measurement matrix and a dictionary. A simple algo-
rithm for solving (5) is Iterative Soft Thresholding (ISTA) [1].
ISTA combines a gradient descent step for minimizing the fi-
delity term with a shrinkage step, where soft thresholding is
applied. Combining this with Nesterov acceleration [7] pro-
duces FISTA (‘F’ for “fast”) [2]. Or, the `1 norm can be re-
placed with the `0 norm, producing Iterative Hard Threshold-
ing [5] instead. These algorithms are simple to implement,
and do not require solving a linear system at each iteration,
making them scalable to large problems.

Now we generalize our regularization in terms of a
penalty function G, while allowing an analysis operator T ,
chosen so that Tx will be sparse:

min
x
G(Tx) + µ

2 ‖Ax− y‖22. (6)

We suppose we know the proximal mapping S of G, so that

argmin
w

G(w) + 1
2λ‖w − x‖22 = Sλ(x). (7)

Adding a splitting variable w, essentially a proxy for Tx,
makes the utility of the proximal mapping clear:

min
w,x

G(w) + 1
2λ‖w − Tx‖

2
2 +

µ
2 ‖Ax− y‖22. (8)



If we fix x and solve (8) for w, our solution is simply w =
Sλ(Tx). This procedure is a key ingredient of the alternating
directions, method of multipliers (ADMM) algorithm [8, 9].
Although the algorithm requires a linear solve at each iter-
ation, the system matrix remains fixed throughout, so that a
factorization or preconditioner need only be computed once.
In some cases, the system can be solved very efficiently in the
Fourier domain.

Thus we see that it is very useful to have a simple, explicit
expression for the proximal mapping of a regularizing penalty
function. For this reason, we propose to reverse the usual ap-
proach of designing a penalty function, then computing its
proximal mapping. In the next Section, we generalize the no-
tion of a shrinkage mapping, of which soft and hard threshold-
ing are examples. We provide conditions on such a mapping
that will guarantee the existence of a corresponding penalty
function, and show rigorously that the penalty function will
possess properties that are desirable for a sparsity-promoting
regularizer. In Sec. 2.1, we provide examples of this proce-
dure, and demonstrate numerically in Sec. 3 that one example
gives better compressive sensing results than ever before.

1.1. Relation to Prior Work

A brief, one-page version of portions of this work appeared
in [10]. This work provides many more details (including a
proof of Theorem 1), as well as additional numerical exper-
iments. The p-shrinkages of Sec. 2.1 appeared first in [11],
then with theoretical justification in [12]. These can be seen
as ad hoc instances of the general procedure described here.
The proximal mapping for the `1/2 quasinorm was computed
in [13] (contemporaneously with [11]), but the approach can-
not be extended to general p.

A referee pointed out substantial overlap between [14,
Prop. 3.2] and Thm. 1. However, several results of Thm. 1
are not present in [14], or elsewhere to our knowledge.

2. GENERALIZED SHRINKAGE AND PENALTY
FUNCTIONS

We proceed to generalize the notion of a shrinkage mapping.
It will suffice to work in one dimension: we restrict our atten-
tion to shrinkages that are defined componentwise in a homo-
geneous manner, having the form S(x)i = s(|xi|) sign(xi)
for some function s. We call S : RN → RN a shrinkage
mapping, and s : R+ → R+ a shrinkage function (where
R+ = [0,∞)).

The reason we seek proximal mappings that “shrink” is
that we want our mapping to sparsify its input. Hence we as-
sume that s(x) ≤ x for all x ∈ R+. We furthermore assume
that s sends some interval of inputs to zero, say s(x) = 0 for
x ≤ λ, for some λ > 0. It is also natural to suppose that s is a
continuous, increasing function. This turns out to be enough
to induce a penalty function with desirable properties.

Theorem 1. Suppose s = sλ : R+ → R+ is continuous,
satisfies x ≤ λ ⇒ s(x) = 0 for some λ > 0, is strictly
increasing on [λ,∞), and s(x) ≤ x. Define S = Sλ on Rn
by S(x)i = s(|xi|) sign(xi) for each i. Then S is the proximal
mapping of a penalty function G(x) =

∑
i g(xi) where g is

even, nondecreasing and continuous on [0,∞), differentiable
on (0,∞), and nondifferentiable at 0 with ∂g(0) = [−1, 1]. If
also x − s(x) is nonincreasing on [λ,∞), then g is concave
on [0,∞) and G satisfies the triangle inequality.

The proof is carefully presented in the Appendix.

2.1. Examples

The oldest example is soft thresholding, for which s(x) =
max{x − λ, 0}. The G constructed in the proof of Thm. 1 is
precisely the `1 norm, independently of λ.

Let s(x) = 0 for x ≤ λ, s(x) = x for x > λ. Then S
is hard thresholding. This s does not satisfy the conditions of
the Theorem, but following the construction of G results in
G(w) = λ

2 ‖w‖0.
A more recent class of examples is given by

sp(x) = max{x− λ2−pxp−1, 0}. (9)

A variant appeared first in [11], also finding use in [12,15,16].
These reduce to soft thresholding when p = 1, and the limit-
ing case as p → −∞ is hard thresholding. The resulting Gp
has no explicit formula for general p. However, we are guar-
anteed by Thm. 1 that Gp is a suitable penalty function, and
having a formula for Sp is more useful for several algorithms
than having a formula forGp. We can plot gp numerically; see
Fig. 1. For p 6= 0, gp approaches |w|p/p − Cp for large |w|,
for some constantCp. In particular, when p < 0, it is bounded
above by−Cp (which is positive). The smaller the value of p,
the slower the growth of gp, which appears to be a desirable
property for recovering sparse signals.

Now we give a new example:

sSH(x) = x exp{−α/[exp(x− λ)− 1]2} (10)

for x ≥ λ, otherwise 0. Here α is an extra tuning parame-
ter. This s satisfies the conditions of the first part of Thm. 1
but not the second part, so the resulting GSH is not necessar-
ily concave and need not satisfy the triangle inequality. The
construction of sSH is designed to provide a close approxima-
tion of hard thresholding that is smooth (with “SH” standing
for “smooth hard”). This is based upon the observation that
hard thresholding itself does not give state-of-the-art results,
and the conjecture that this is due to its discontinuity. A plot
of the numerically computed gSH is in Fig. 1; we see that it
grows very slowly.

3. NUMERICAL RESULTS

We give numerical results to illustrate the greatly improved
reconstruction performance that is possible using the new



Fig. 1. Plots of gp for four values of p, and the gSH induced
by the smooth approximation of hard thresholding with α =
10−2, all using λ = 1.

penalty function GSH constructed in this paper. The context
for the experiment is synthetic magnetic resonance imaging
(MRI). We let x0 be the 256 × 256 Shepp-Logan phantom,
and let A correspond to sampling the discrete Fourier trans-
form (DFT) of x0 along varying numbers of radial lines. We
let y = Ax0, and consider various examples of G in the
equality-constrained version of (8), which can be obtained by
incorporating the method of multipliers [17,18] into (8) itself.
We let T be a discrete gradient operator, computed with sim-
ple forward differencing and periodic boundary conditions.

The case of G being the `1 norm (thus S being soft
thresholding) first appeared in [19]. 18 lines of DFT sam-
ples are required for perfect reconstruction. The case of
G(w) = ‖w‖1/21/2 first appeared in [20], with the proximal
mapping having been worked out in [13]. With this G, 10
lines are required. This is reduced to 9 lines using G−1/2
induced by (9); this was shown in [11]. In this work, we
use the ADMM approach described in the Introduction, with
α = 10−2 and λ = µ = 1010. We find 6 lines to be sufficient
for perfect reconstruction, greatly improving upon previous
results. These results are summarized in Fig. 2. Note that
with 5 lines of samples, counting both real and imaginary
parts (or equivalently, using the knowledge that the result is
real-valued), we have 2830 samples, while ∇x0 has 2952
nonzero pixels. Consequently, even a global minimizer using
G(w) = ‖w‖0 cannot equal x0. Thus the result presented
here would appear to be the best possible for this particular
example.

We also consider the case of noisy data, by adding noise
drawn from the standard normal distribution to each of the
real and imaginary parts of y. The resulting data has an SNR
of 29.9 dB. Using λ = 104.4 and µ = 104.7, we obtain a
reconstruction of 22.4 dB with all features preserved, which
is remarkable given the very low sampling (2.6%). For com-
parison, using G1 (the `1 norm) and G−1/2 instead give re-
constructions of 2.2 dB and 21.3 dB, with some features lost.
Results are in Fig. 3.

(a) p = 1, 2.2 dB (b) p = −1/2, 21.3 dB (c) smooth hard, 22.4 dB

Fig. 3. Reconstructions from noisy MRI data (SNR 29.9 dB).
Only the result using GSH preserves all features.

4. CONCLUSIONS

We described an approach for constructing penalty functions
by specifying a shrinkage mapping, and requiring the penalty
function have the shrinkage as its proximal mapping. Simple
conditions on a shrinkage function are shown to lead to de-
sirable properties for the induced penalty function. We gave a
new example of a shrinkage mapping, a smooth approxima-
tion of hard thresholding, and showed numerical results that
demonstrated that the induced penalty function allows recon-
struction of sparse images from fewer data than ever before,
while retaining reasonable robustness to noise.

5. APPENDIX

Proof of Theorem 1. We proceed slowly. First, we need to
construct our componentwise penalty function g, and then
show that it has the claimed properties. We will be employing
tools from convex analysis, and a key ingredient is for s to
be the derivative of a convex function (which will be more
convenient to have defined on all of R). To this end, extend
s to a function on R by requiring s(−x) = −s(x) so that
s is odd. Then simply define f(x) =

∫ x
0
s(t) dt. Then we

have f ′ = s, and thus f is a C1 function. Now we bring in
convex duality, in particular the Legendre-Fenchel transform.
Applied to f , this produces the convex conjugate f∗, defined
by:

f∗(w) = sup
x
wx− f(x). (11)

See Fig. 4. We will use w for our dual variable and x for our
primal variable. Given a w, we consider the line wx through
the origin, and find the largest vertical difference (including
sign) between this line and the graph of f . The value of this
difference is f∗(w). The place (or set of places) where the
largest difference occurs is also important. We will use the
following relations, from [21, Prop. 11.3]:

argmax
x

wx− f(x) = ∂f∗(w) (12)

argmax
w

wx− f∗(w) = ∂f(x). (13)



(a) test image (b) `1 norm: 18 lines (c) `1/2 norm: 10 lines (d) G−1/2: 9 lines (e) GSH: 6 lines

Fig. 2. Reconstructions of the 256×256 Shepp-Logan phantom from samples of its Fourier transform (as in MRI), with different
penalty functions composed with a discrete gradient. Shown are the sampling masks for radial sampling using the minimum
number of lines necessary for perfect reconstruction, with the new shrinkage presented in this paper giving much better results,
optimal for this particular example.

y = 〈w, x〉

x
λ

y = f (x)

x∗

Fig. 4. An example of the function f . Its convex conjugate at
w is the greatest height above the graph of f attained by a line
through the origin with slope w.

The subdifferential ∂ reduces to the derivative for differen-
tiable functions; otherwise, it is the set of slopes of “sub-
tangents,” or lines tangent and locally not crossing above the
graph. For example, ∂|x|(0) = [−1, 1]. Note that (13) would
follow from (12) if we replaced the final f by f∗∗, but our
assumptions on f suffice to give us that f∗∗ = f .

Now we can define g(w) = (f∗(w)−w2/2)/λ. We need
to show that it has s as a proximal function. We use (13):

s(x) = f ′(x) = argmax
w

wx− f∗(w)

= argmax
w

wx− λg(w)− w2/2

= argmin
w

g(w)− 1
2λ (w − x)

2,

(14)

where the last line is obtained by subtracting x2/2 (which
doesn’t affect the maximizing w) and dividing by −λ. Then
if we define G(w) =

∑
i g(wi), we will have

argmin
w

G(w) + 1
2λ‖w − x‖22 = S(x), (15)

since the optimization problem on the left is separable, mean-
ing its solution can be computed separately for each compo-
nent. Thus we have established that G is a penalty function
having S for a proximal mapping.

Now we need to establish the claimed properties of g. The
evenness of g follows from the evenness of f , which follows
from s being odd. If w > 0, it is evident from Fig. 4 that the
maximizer of wx − f(x) is unique, so by (12), ∂f∗(w) is a
singleton. This means that f∗(w) is differentiable on (0,∞),
hence so is g. This also gives us continuity of g on (0,∞), but
it is clear from the definitions and Fig. 4 that f∗(0) = 0 and
f∗(w) → 0 as w → 0. Hence g is continuous at 0 as well.
And since argmaxx 0x−f(x) = [−λ, λ] = ∂f∗(0), we have
∂g(0) = [−1, 1].

To show that g is nondecreasing on (0,∞), we show
that g′(w) = ((f∗)′(w) − w)/λ is nonnegative there. From
(12), we have (f∗)′(w) = argmaxx wx − f(x), and need
to show that this is at least w. The maximizing x∗ satisfies
w = f ′(x∗) = s(x∗) ≤ x∗, establishing the claim.

Now we suppose x−s(x) is nonincreasing on [λ,∞). We
will show that g′ is nonincreasing on (0,∞), which will es-
tablish the concavity of g. As before, we have λg′(w) + w =
x∗ with s(x∗) = w. Then λg′(w) = x∗ − s(x∗), which is
a nonincreasing function of x∗. Since x∗ is clearly a nonin-
creasing function of w (see Fig. 4), we have that g′ is nonin-
creasing.

Lastly, we show that g(v+w) ≤ g(v)+g(w). If v orw are
zero, this is trivial. If vw < 0, then |v + w| < max{|v|, |w|}.
Then

g(v + w) = g(|v + w|) < g(max{|v|, |w|}) < g(v) + g(w),
(16)

the last simply because g is nonnegative. Finally, assume
vw > 0, and without loss of generality assume that v
and w are positive. Since g′ is nonincreasing, we have∫ w
0
g′(v + t) − g′(t) dt ≤ 0. Evaluating the integrals di-

rectly makes the desired result fall out.
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